Source code for gala.dynamics.nonlinear

# Third-party
import astropy.units as u
import numpy as np
from scipy.signal import argrelmin

# Project
from . import PhaseSpacePosition, Orbit

__all__ = ['fast_lyapunov_max', 'lyapunov_max', 'surface_of_section']


[docs] def fast_lyapunov_max(w0, hamiltonian, dt, n_steps, d0=1e-5, n_steps_per_pullback=10, noffset_orbits=2, t1=0., atol=1E-10, rtol=1E-10, nmax=0, return_orbit=True): """ Compute the maximum Lyapunov exponent using a C-implemented estimator that uses the DOPRI853 integrator. Parameters ---------- w0 : `~gala.dynamics.PhaseSpacePosition`, array_like Initial conditions. hamiltonian : `~gala.potential.Hamiltonian` dt : numeric Timestep. n_steps : int Number of steps to run for. d0 : numeric (optional) The initial separation. n_steps_per_pullback : int (optional) Number of steps to run before re-normalizing the offset vectors. noffset_orbits : int (optional) Number of offset orbits to run. t1 : numeric (optional) Time of initial conditions. Assumed to be t=0. return_orbit : bool (optional) Store the full orbit for the parent and all offset orbits. Returns ------- LEs : :class:`~astropy.units.Quantity` Lyapunov exponents calculated from each offset / deviation orbit. orbit : `~gala.dynamics.Orbit` (optional) """ from gala.potential import PotentialBase from .lyapunov import dop853_lyapunov_max, dop853_lyapunov_max_dont_save # TODO: remove in v1.0 if isinstance(hamiltonian, PotentialBase): from ..potential import Hamiltonian hamiltonian = Hamiltonian(hamiltonian) if not hamiltonian.c_enabled: raise TypeError("Input Hamiltonian must contain a C-implemented " "potential and frame.") if not isinstance(w0, PhaseSpacePosition): w0 = np.asarray(w0) ndim = w0.shape[0]//2 w0 = PhaseSpacePosition(pos=w0[:ndim], vel=w0[ndim:]) _w0 = np.squeeze(w0.w(hamiltonian.units)) if _w0.ndim > 1: raise ValueError("Can only compute fast Lyapunov exponent for a single orbit.") if return_orbit: t, w, l = dop853_lyapunov_max(hamiltonian, _w0, dt, n_steps+1, t1, d0, n_steps_per_pullback, noffset_orbits, atol, rtol, nmax) w = np.rollaxis(w, -1) try: tunit = hamiltonian.units['time'] except (TypeError, AttributeError): tunit = u.dimensionless_unscaled orbit = Orbit.from_w(w=w, units=hamiltonian.units, t=t*tunit, hamiltonian=hamiltonian) return l/tunit, orbit else: l = dop853_lyapunov_max_dont_save(hamiltonian, _w0, dt, n_steps+1, t1, d0, n_steps_per_pullback, noffset_orbits, atol, rtol, nmax) try: tunit = hamiltonian.units['time'] except (TypeError, AttributeError): tunit = u.dimensionless_unscaled return l/tunit
[docs] def lyapunov_max(w0, integrator, dt, n_steps, d0=1e-5, n_steps_per_pullback=10, noffset_orbits=8, t1=0., units=None): """ Compute the maximum Lyapunov exponent of an orbit by integrating many nearby orbits (``noffset``) separated with isotropically distributed directions but the same initial deviation length, ``d0``. This algorithm re-normalizes the offset orbits every ``n_steps_per_pullback`` steps. Parameters ---------- w0 : `~gala.dynamics.PhaseSpacePosition`, array_like Initial conditions. integrator : `~gala.integrate.Integrator` An instantiated `~gala.integrate.Integrator` object. Must have a run() method. dt : numeric Timestep. n_steps : int Number of steps to run for. d0 : numeric (optional) The initial separation. n_steps_per_pullback : int (optional) Number of steps to run before re-normalizing the offset vectors. noffset_orbits : int (optional) Number of offset orbits to run. t1 : numeric (optional) Time of initial conditions. Assumed to be t=0. units : `~gala.units.UnitSystem` (optional) If passing in an array (not a `~gala.dynamics.PhaseSpacePosition`), you must specify a unit system. Returns ------- LEs : :class:`~astropy.units.Quantity` Lyapunov exponents calculated from each offset / deviation orbit. orbit : `~gala.dynamics.Orbit` """ if units is not None: pos_unit = units['length'] vel_unit = units['length']/units['time'] else: pos_unit = u.dimensionless_unscaled vel_unit = u.dimensionless_unscaled if not isinstance(w0, PhaseSpacePosition): w0 = np.asarray(w0) ndim = w0.shape[0]//2 w0 = PhaseSpacePosition(pos=w0[:ndim]*pos_unit, vel=w0[ndim:]*vel_unit) _w0 = w0.w(units) ndim = 2*w0.ndim # number of iterations niter = n_steps // n_steps_per_pullback # define offset vectors to start the offset orbits on d0_vec = np.random.uniform(size=(ndim, noffset_orbits)) d0_vec /= np.linalg.norm(d0_vec, axis=0)[np.newaxis] d0_vec *= d0 w_offset = _w0 + d0_vec all_w0 = np.hstack((_w0, w_offset)) # array to store the full, main orbit full_w = np.zeros((ndim, n_steps+1, noffset_orbits+1)) full_w[:, 0] = all_w0 full_ts = np.zeros((n_steps+1,)) full_ts[0] = t1 # arrays to store the Lyapunov exponents and times LEs = np.zeros((niter, noffset_orbits)) ts = np.zeros_like(LEs) time = t1 total_steps_taken = 0 for i in range(1, niter+1): ii = i * n_steps_per_pullback orbit = integrator(all_w0, dt=dt, n_steps=n_steps_per_pullback, t1=time) tt = orbit.t.value ww = orbit.w(units) time += dt*n_steps_per_pullback main_w = ww[:, -1, 0:1] d1 = ww[:, -1, 1:] - main_w d1_mag = np.linalg.norm(d1, axis=0) LEs[i-1] = np.log(d1_mag/d0) ts[i-1] = time w_offset = ww[:, -1, 0:1] + d0 * d1 / d1_mag[np.newaxis] all_w0 = np.hstack((ww[:, -1, 0:1], w_offset)) full_w[:, (i-1)*n_steps_per_pullback+1:ii+1] = ww[:, 1:] full_ts[(i-1)*n_steps_per_pullback+1:ii+1] = tt[1:] total_steps_taken += n_steps_per_pullback LEs = np.array([LEs[:ii].sum(axis=0)/ts[ii-1] for ii in range(1, niter)]) try: t_unit = units['time'] except (TypeError, AttributeError): t_unit = u.dimensionless_unscaled orbit = Orbit.from_w(w=full_w[:, :total_steps_taken], units=units, t=full_ts[:total_steps_taken]*t_unit) return LEs/t_unit, orbit
[docs] def surface_of_section(orbit, constant_idx, constant_val=0.): """ Generate and return a surface of section from the given orbit. Parameters ---------- orbit : `~gala.dynamics.Orbit` The input orbit to generate a surface of section for. constant_idx : int Integer that represents the coordinate to record crossings in. For example, for a 2D Hamiltonian where you want to make a SoS in :math:`y-p_y`, you would specify ``constant_idx=0`` (crossing the :math:`x` axis), and this will only record crossings for which :math:`p_x>0`. Returns ------- sos : numpy ndarray TODO: - Implement interpolation to get the other phase-space coordinates truly at the plane, instead of just at the orbital position closest to the plane. """ if orbit.norbits > 1: raise NotImplementedError("Not yet implemented, sorry!") w = ([getattr(orbit, x) for x in orbit.pos_components] + [getattr(orbit, v) for v in orbit.vel_components]) ndim = orbit.ndim p_ix = constant_idx + ndim # record position on specified plane when orbit crosses cross_idx = argrelmin((w[constant_idx] - constant_val) ** 2)[0] cross_idx = cross_idx[w[p_ix][cross_idx] > 0.] sos_pos = [w[i][cross_idx] for i in range(ndim)] sos_pos = orbit.pos.__class__(*sos_pos) sos_vel = [w[i][cross_idx] for i in range(ndim, 2*ndim)] sos_vel = orbit.vel.__class__(*sos_vel) return Orbit(sos_pos, sos_vel)