Source code for gala.integrate.pyintegrators.rk5

"""5th order Runge-Kutta integration."""

# Third-party
import numpy as np

# Project
from ..core import Integrator
from ..timespec import parse_time_specification

__all__ = ["RK5Integrator"]

# These are the Dormand-Prince parameters for embedded Runge-Kutta methods
A = np.array([0.0, 0.2, 0.3, 0.6, 1.0, 0.875])
B = np.array(
    [
        [0.0, 0.0, 0.0, 0.0, 0.0],
        [1.0 / 5.0, 0.0, 0.0, 0.0, 0.0],
        [3.0 / 40.0, 9.0 / 40.0, 0.0, 0.0, 0.0],
        [3.0 / 10.0, -9.0 / 10.0, 6.0 / 5.0, 0.0, 0.0],
        [-11.0 / 54.0, 5.0 / 2.0, -70.0 / 27.0, 35.0 / 27.0, 0.0],
        [
            1631.0 / 55296.0,
            175.0 / 512.0,
            575.0 / 13824.0,
            44275.0 / 110592.0,
            253.0 / 4096.0,
        ],
    ]
)
C = np.array([37.0 / 378.0, 0.0, 250.0 / 621.0, 125.0 / 594.0, 0.0, 512.0 / 1771.0])
D = np.array(
    [
        2825.0 / 27648.0,
        0.0,
        18575.0 / 48384.0,
        13525.0 / 55296.0,
        277.0 / 14336.0,
        1.0 / 4.0,
    ]
)


[docs] class RK5Integrator(Integrator): r""" Initialize a 5th order Runge-Kutta integrator given a function for computing derivatives with respect to the independent variables. The function should, at minimum, take the independent variable as the first argument, and the coordinates as a single vector as the second argument. For notation and variable names, we assume this independent variable is time, t, and the coordinate vector is named x, though it could contain a mixture of coordinates and momenta for solving Hamilton's equations, for example. .. seealso:: - http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods Parameters ---------- func : func A callable object that computes the phase-space coordinate derivatives with respect to the independent variable at a point in phase space. func_args : tuple (optional) Any extra arguments for the function. func_units : `~gala.units.UnitSystem` (optional) If using units, this is the unit system assumed by the integrand function. """
[docs] def step(self, t, w, dt): """Step forward the vector w by the given timestep. Parameters ---------- dt : numeric The timestep to move forward. """ # Runge-Kutta Fehlberg formulas (see: Numerical Recipes) F = lambda t, w: self.F(t, w, *self._func_args) # noqa K = np.zeros((6,) + w.shape) K[0] = dt * F(t, w) K[1] = dt * F(t + A[1] * dt, w + B[1][0] * K[0]) K[2] = dt * F(t + A[2] * dt, w + B[2][0] * K[0] + B[2][1] * K[1]) K[3] = dt * F( t + A[3] * dt, w + B[3][0] * K[0] + B[3][1] * K[1] + B[3][2] * K[2] ) K[4] = dt * F( t + A[4] * dt, w + B[4][0] * K[0] + B[4][1] * K[1] + B[4][2] * K[2] + B[4][3] * K[3], ) K[5] = dt * F( t + A[5] * dt, w + B[5][0] * K[0] + B[5][1] * K[1] + B[5][2] * K[2] + B[5][3] * K[3] + B[5][4] * K[4], ) # shift dw = np.zeros_like(w) for i in range(6): dw = dw + C[i] * K[i] return w + dw
[docs] def __call__(self, w0, mmap=None, **time_spec): # generate the array of times times = parse_time_specification(self._func_units, **time_spec) n_steps = len(times) - 1 dt = times[1] - times[0] w0_obj, w0, ws = self._prepare_ws(w0, mmap, n_steps=n_steps) if self.save_all: # Set first step to the initial conditions ws[:, 0] = w0 w = w0.copy() range_ = self._get_range_func() for ii in range_(1, n_steps + 1): w = self.step(times[ii], w, dt) if self.save_all: ws[:, ii] = w if not self.save_all: ws = w times = times[-1:] return self._handle_output(w0_obj, times, ws)